INTRODUCTION

- Ceftaroline (Pfizer) and ceftobiprole (Correvio) are cephalosporins active against Gram-positive bacteria, including MRSA. Indications and clinical breakpoints differ (Table 1).
- There are few direct comparisons of their activity published.
- We reviewed comparative data for both agents vs.
 - staphylococci and pneumococci causing clinically-significant bacteraemia
 - pneumococci causing community-acquired pneumonia (CAP)

METHODS

- The BSAC Resistance Surveillance Programme has collected S. aureus, CoNS (coagulase-negative staphylococci) and S. pneumoniae causing clinically-significant bacteraemia between 2001 and 2017, and respiratory S. pneumoniae since 1999, from 22-39 hospitals throughout the UK and Ireland.
- Ceftaroline and ceftobiprole were tested in parallel by agar diffusion in 2008, 2013 and 2017 for bloodstream isolates (all species) and in 2016/17 for respiratory S. pneumoniae only.
- Ceftaroline and ceftobiprole were tested in parallel by agar diffusion in 2008, 2013 and 2017 for bloodstream isolates (all species) and in 2016/17 for respiratory S. pneumoniae only.
- CoNS were identified to species level in 2013 and 2017 by species) and in 2016/17 for respiratory bacteraemia.
- Modal and geometric mean MICs did not change significantly between years, except for CoNS tested with ceftobiprole where MICs rose for MR-CoNS and fell for MS-CoNS (Table 2).
- The geometric mean MICs of ceftobiprole varied by MR-CoNS species:
 - MR- S. epidermidis (215/291: 0.77)
 - MR- S. haemolyticus (33/36: 1.31)
 - MR-CoNS (other species) (53/105: 0.98)

RESULTS

- 3029 isolates were tested with both agents in the 3 non-consecutive years (Table 2).
- Modal and geometric mean MICs did not change significantly between years, except for CoNS tested with ceftobiprole where MICs rose for MR-CoNS and fell for MS-CoNS (Table 2).
- The geometric mean MICs of ceftobiprole varied by MR-CoNS species:
 - MR- S. epidermidis (215/291: 0.77)
 - MR- S. haemolyticus (33/36: 1.31)
 - MR-CoNS (other species) (53/105: 0.98)
- Rates of non-susceptibility to ceftaroline and ceftobiprole were low (Figure 1):
 - 10 (5%) MRSA and 42 (10%) MR-CoNS were non-susceptible to ceftaroline.
 - All S. aureus were susceptible to ceftobiprole.
 - 26/40 MR-CoNS were identified with ceftobiprole MIC >2mg/L; 22 (85%) were MR- S. haemolyticus.
 - 1 S. pneumoniae (serotype 19F) was non-susceptible to both ceftaroline and ceftobiprole.
- 2 further S. pneumoniae (serotypes 19F and 19A) were non-susceptible to ceftobiprole.

CONCLUSIONS

- Ceftaroline and ceftobiprole have similarly good activity against both staphylococci and pneumococci.
- Modal ceftaroline MICs for staphylococci tended to be c. 2-fold lower than ceftobiprole, but ceftobiprole has a 2-fold higher breakpoint.
- There were no changes in susceptibility of ceftaroline and ceftobiprole among S. aureus and pneumococci across the 10 years (2008-17).
- Changes in ceftobiprole MICs in CoNS were not due to changes in species distribution.
- Ceftobiprole MICs for MR- S. haemolyticus were >2mg/L in 22/33 (67%) cases compared with 2/215 (0.9%) MR- S. epidermidis.
- Ceftaroline MICs were also raised for MR- S. haemolyticus at 2mg/L.
- Choices regarding which agent to prefer should be predicated on other differentiating factors, e.g. licensed indications, reported clinical experience, and breadth of Gram-negative coverage.
- Continued collection of surveillance data is crucial for our understanding of antibiotic resistance trends in the UK and Ireland.

ACKNOWLEDGEMENTS

- BSAC is grateful to all of the companies that have sponsored the Programme (current sponsors: MSD and Pfizer); sentinel laboratories submitting isolates, and staff at the Central Testing Laboratory, PHE, London.
- The BSAC Standing Committee on Resistance Surveillance are Dr M. Allen, Dr D.F.J. Brown, Prof. D.M. Livermore, Dr C. Longshaw, Prof. A. Johnson, Prof. A.P MacGowan and Prof N. Woodford.

REFERENCES

3) www.bsacsurv.org.uk, incl. sponsor list.
6) http://www.eucast.org/clinical_breakpoints.

TO REQUEST ISOLATES

Contact: Carolyne Horner: rs@bsac.org.uk.