What’s new in antifungal susceptibility testing? Molecular detection of antifungal drug resistance

Professor Malcolm Richardson PhD, FSB, FRCPath, FECMM Academy
The NHS Mycology Reference Centre
A European Confederation of Medical Mycology Centre of Excellence
The UK EUCAST Collaborative Laboratory
University Hospital of South Manchester Foundation Trust, Manchester
NHS Mycology Reference Centre Manchester
16 Consultants, Senior Healthcare Scientists, Healthcare Scientists and Practitioners

Co-supervision 4 PhD students, partner with UoM Masters in Medical Mycology
Content

- Antifungal drugs, use and activity
- Global resistance problem
- How triazole resistance develops
- Resistance mechanisms
- Scale of the problem in the UK
- Different methods for monitoring resistance
- How to monitor resistance using pyrosequencing
- How this test may improve patient care
- Future developments
Antifungal drugs for *Aspergillus*

<table>
<thead>
<tr>
<th>Class</th>
<th>Drug</th>
<th>Route of administration</th>
<th>Indication with respect to Aspergillus diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triazole</td>
<td>Itraconazole</td>
<td>Intravenous/oral</td>
<td>Treatment of chronic Aspergillus diseases
Salvage therapy</td>
</tr>
<tr>
<td></td>
<td>Voriconazole</td>
<td>Intravenous/oral</td>
<td>Primary therapy of invasive aspergillosis (IA)
Salvage therapy</td>
</tr>
<tr>
<td></td>
<td>Posaconazole</td>
<td>Oral</td>
<td>Prophylaxis of invasive fungal disease
Salvage therapy</td>
</tr>
<tr>
<td></td>
<td>Isavuconazole</td>
<td>Intravenous/oral</td>
<td>Salvage therapy</td>
</tr>
<tr>
<td>Polyene</td>
<td>Lipid formulations of amphotericin b</td>
<td>Intravenous</td>
<td>Primary therapy of invasive aspergillosis (IA)
as an alternative choice for voriconazole
Salvage therapy</td>
</tr>
<tr>
<td>Echinocandin</td>
<td>Caspofungin</td>
<td>Intravenous</td>
<td>Prophylaxis of refractory invasive fungal disease
Salvage therapy</td>
</tr>
<tr>
<td></td>
<td>Anidulafungin</td>
<td>Intravenous</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Micafungin</td>
<td>Intravenous</td>
<td></td>
</tr>
</tbody>
</table>

Current susceptibility testing methods

• EUCAST
• CLSI
• ETEST
• Sensititre One
• Vitek 2
Etest - isavuconazole

Wild type *Aspergillus fumigatus*

Aspergillus fumigatus Cyp51 TR46/Y121F/T289A
Resistance – a global problem

Current global prevalence ofazole resistance is estimated at between 0.3 and 28%
Development of resistance

Echinocandins inhibit glucan synthase responsible of β-(1,3)-glucan synthesis

Nucleosides inhibit nucleic acid synthesis

Allylamines inhibit ergosterol synthesis

Azoles inhibit CYP-450 enzyme responsible for ergosterol synthesis

Polyenes bind to ergosterol

Nystatin
Amphotericin B

Mannoproteins

Phospholipid bilayer of fungal cell membrane

Ergosterol

β-(1,6)-glucan

β-(1,3)-glucan

Terbinafine

Fluconazole
Itraconazole
Voriconazole
Posaconazole
Isavuconazole

5-flucytocine

Caspofungin
Anidulafungin
Micafungin

Courtesy Prof MD Richardson
Mechanisms of triazole resistance

Resistance mechanisms in *Aspergillus fumigatus*:

- Target enzyme of tri-azoles: lanosterol 14α-demethylase, **cyp51A**
- Target pathway: ergosterol biosynthesis, resulting in ergosterol depletion and accumulation of toxic sterols
- Mutations in target gene result in decreased drug binding and effectiveness

Other mechanisms:

- Overexpression of efflux pumps which clear the drug
- Mutations in gene transcription (e.g. *Hap, Aft1*) leading to overexpression of **cyp51A**
- Unknown…

Resistance markers in *cyp51A*

Modifications in *Aspergillus fumigatus cyp51A*

- **TR34 plus L98H**: pan-azole R
- **TR34/L98I/Q/R/Y**: ITR R
- **TR46 plus Y121F and T289A**: pan-azole R
- **G54E/K**: ITR R
- **G54R/V/W**: ITR R and PSC R
- **M220I/V**: ITR R
- **M220R/K/T/W**: ITR R and PSC R

ITR = itraconazole
VOR = voriconazole
PSC = posaconazole

cyp51A mutations in Europe

Prospective multicentre international surveillance study in which a total of 3,788 *Aspergillus* isolates were screened in 22 centres from 19 countries.

Prevalence of 3.2% azole-resistance in *A. fumigatus* isolates in a period of 8 months to 1 year.

<table>
<thead>
<tr>
<th>Country</th>
<th>No. azole-resistant isolates, n = 47</th>
<th>TR34/L98H or TR46/Y121F/T289A mechanism (no. isolates)</th>
<th>Other mutations (no. isolates)</th>
<th>No. isolates without cyp51A-mutations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Austria</td>
<td>2</td>
<td>TR34/L98H (2)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Belgium</td>
<td>8</td>
<td>TR34/L98H (7)</td>
<td>F46Y/M172G (1)</td>
<td>0</td>
</tr>
<tr>
<td>Denmark</td>
<td>6</td>
<td>TR34/L98H (4)</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>France</td>
<td>4</td>
<td>TR34/L98H (1)</td>
<td>G54W (1)</td>
<td>2</td>
</tr>
<tr>
<td>Italy</td>
<td>5</td>
<td>TR34/L98H (5)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>7</td>
<td>TR34/L98H (4), TR46/Y121F/T289A (3)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spain</td>
<td>1</td>
<td>No isolates</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Sweden</td>
<td>1</td>
<td>No isolates</td>
<td>F46Y/M172G</td>
<td>0</td>
</tr>
</tbody>
</table>

Resistant isolates, %

| | 100 | 55.3 | 29.8 | 14.9 |

Acquired resistance mechanisms from each country in *cyp51A* gene in 47 *Aspergillus fumigatus* isolates with an azole-resistant phenotype
Patient case 1

- Male, early forties, admitted to Burns Centre in April 2016 following self-inflicted burns (44% total body surface area)
- Works in UK marble plant, resizing imported marble from Spain and Italy
- Last travel to Spain was ~3 months prior, no history of prior azole use
- Prior to day 47, 12 respiratory samples: all negative for fungi
- Day 47 – Aspergillus fumigatus isolated from non-directed BAL – resistant to itraconazole, voriconazole, posaconazole and isavuconazole; also on days 53, 57, 69 and 74
- Isolates from days 47 and 57: sequencing revealed a TR46 repeat insertion, and also mutations Y121F and T289A
- All A. fumigatus isolates from air samples were susceptible to all azoles

- The first case of a pan-azole resistant A. fumigatus cyp51A TR46/Y121F/T289A mutant in the UK
The National Aspergillosis Centre

• 457 referrals, 111 new cases in 2015/16
• Chronic Pulmonary Aspergillosis (CPA) patients:
 – >100 new cases annually
 – ~10-15% annual mortality
• 346 additional referrals in 2015/16:
 Allergic Bronchopulmonary Aspergillosis (ABPA)
 Severe Asthma with Fungal Sensitisation (SAFS)
 Cystic Fibrosis (CF)
 Fewer cases of invasive aspergillosis (IA)
 Rhinosinusitis and *Aspergillus* bronchitis
• *Globally:* 100,000 IA, 3 million CPA, 7.5 million allergic
Antifungal resistance

• Intrinsic resistance (eg. *Aspergillus calidoustus*)
• Resistance that develops during treatment (azoles and low levels/long-term therapy) **Patient route**
• Infection caused by resistant isolates from the environment (agricultural use of azole fungicides) **Environmental route**
• Transient resistance caused by polyploidy (*Candida* and *Cryptococcus* during azole therapy)
Antifungal resistance – The Manchester experience

A

- Multi-azole resistant
- Itraconazole & posaconazole resistant
- Itraconazole & voriconazole resistant
- Voriconazole resistant
- Itraconazole resistant
- Fully susceptible

B

Monitoring infection & resistance

Sputum BAL blood

High volume culture

*EUCAST: Antifungal drug susceptibility testing plate
All 4 azoles
Amphotericin b
Micafungin

No growth?
Typically only 2.1 patients of 10 000 admissions grow *Aspergillus fumigatus*
HVC: 50-70% culture negative

Patient responds to recommended treatment

Pro-active therapeutic drug monitoring

Susceptibility results: S, I, R
Guidance for clinicians

Monitoring infection & resistance

Sputum BAL blood → DNA extraction 4-6 h → ASPERGILLUS qPCR (quantitative PCR, 2 h)

- PCR negative – other cause?
- PCR positive
 - Patient responds to recommended treatment
 - PCR positive >> Patient does not respond
 - Pro-active therapeutic drug monitoring
Monitoring sensitivity/resistance: the demand

Monthly:

- 100 positive cultures - susceptibility testing
- 250-300 respiratory samples are culture negative > processed by qPCR
- A quarter of PCR samples (60-75) test positive for *Aspergillus* spp.
- Aim: minimum of 600 samples per annum monitored for resistance (two thirds)
- Future: process all new patients at diagnosis
Monitoring resistance

- 2nd Duden Conference/1st ISHAM/ECMM Aspergillus Resistance Surveillance working group meeting, 20-21 January 2017, Berg en Dal, Nederland
- VIPcheck™ azole resistance detection
- Pathonostica AsperGenius® PCR
- In-house qPCRs
- Sanger sequencing
Monitoring resistance by pyrosequencing

- Discovered in 1990s, up to 150 base pyrosequencing
- DNA extract directly from patient sample, polymerase chain reaction (PCR) (6h)
- PCR and pyrosequencing, time to result: 6h
- Determination of mutations in cyp51A associated with azole resistance:
 - TR34/L98H, TR46/Y121/T289, G54, M220

Funding: January 2016
Dedicated personnel: July 2016
First patient samples processed: December 2016
Pyrosequencing in a nutshell (1)

First polymerase chain reaction (PCR):
Amplify *Aspergillus fumigatus cyp51A* gene from the patient sample.

EXAMPLE: Section of the *cyp51A* gene containing the Met220 amino acid sequence

Second PCR: Amplify short sections of the *cyp51A* gene with biotinylated primers. This enables purification of the single strands of DNA of interest.

ATCGATGAAGGGTTCATGTGCATGCTAGATATC

Pyrosequencing
Pyrosequencing in a nutshell (2)

All components included to make an exact copy of the patient *cyp51A* sequence.

Components are added one at a time and in a known sequence so that they can be monitored and checked by the software.

Software then compares the new, patient pyrosequence to the normal *cyp51A* sequence: mismatches (or mutations) can be identified by sequence comparison.

Courtesy http://genoseq.ucla.edu
Pyrosequencing output

- CAT-AAAA
- CTT-AAAA
- L98H >> ITR/VOR R

M220K >> ITR/PSC R

normal
Can we improve patient care?

- Assess whether therapy failure is associated with a \textit{cyp51A} mutation
- Predict whether a patient may fail therapy by detecting a \textit{cyp51A} mutation
- Alternative azole therapy
 - e.g. G54R/V/W ITR R / PSC R
 - e.g. M220I/V ITR R
- Alternative therapy if tri-azole resistance is detected
 - e.g. M220R/K ITR/PSC R, VOR elevated MICs
- Combination therapies?
- Surgery
Patient case 2

- Female, mid sixties, first diagnosed with CPA in 2010, prescribed itraconazole in August
- TDM demonstrates maintenance of high serum itraconazole levels
- Switched to voriconazole in 2012
- Susceptibility testing of *A. fumigatus* isolates reveals:
 - April 2012: resistant to itraconazole and voriconazole, susceptible to posaconazole
 - June 2012: resistant to itraconazole, voriconazole, posaconazole intermediate
 - August 2012: resistant to itraconazole, voriconazole, and posaconazole
- Continued sampling: no growth in culture but PCR positive, *Aspergillus fumigatus species complex* confirmed by sequencing
- Surgery suggested: left upper lobectomy in February 2014, full recovery, no symptoms
- Fungal cultures are negative, GM negative, PCRs negative
- Discharged from service in March 2015
Future Prospects: resistance monitoring

Other resistance mechanisms in *Aspergillus*:

- Increased expression resulting in decreased cytosolic drug levels and stress response proteins
 - Efflux pumps (MDR1 or CDR1/2)
 - ATP-binding cassette transporters
 - Other regulatory elements, e.g. SrbA

- Other pyrosequencing targets: expression changes leading to resistance but via nucleotide substitutions
 - *HapE* (P88L), transcription factor complex subunit
 - Presence of Aft1 transposon (inserted 370 bp upstream of the *cyp51A* start codon)

- Resistance to other antifungal drugs, in other fungi/yeasts, bacteria/antibiotics

More future

- Flow cytometry
- MALDI-TOF mass spectrometry
- X-plate technology
- Porous aluminum oxide-based culture
- Isothermal microcalorimetry
Antifungal susceptibility testing in practice
ISHAM Working Group: Digital Mycological Education

FungiMICs

Continue

ISHAM
International Society for Human and Animal Mycology

EUCAST
European Committee on Antimicrobial Susceptibility Testing
Aspergillus fumigatus: Isavuconazole

MIC Breakpoint (mg/L)

<table>
<thead>
<tr>
<th></th>
<th>S≤</th>
<th>R></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

% microorganisms

MIC (mg/L)
Aspergillus fumigatus: Amphotericin B

Clinical Breakpoint
ECOFF
Histogram
Box Plot

MIC Breakpoint (mg/L)

<table>
<thead>
<tr>
<th>S≤</th>
<th>R></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

% microorganisms

MIC (mg/L)

Susceptible Intermediate Resistant
Aspergillus fumigatus: Isavuconazole

MIC Breakpoint (mg/L)

<table>
<thead>
<tr>
<th></th>
<th>S£</th>
<th>R></th>
</tr>
</thead>
<tbody>
<tr>
<td>MIC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Susceptible | Intermediate | Resistant

% microorganisms vs. MIC (mg/L)
Summary

- Antifungal resistance is on the rise in the UK and globally.
- Early and pro-active monitoring of triazole resistance can improve:
 - Patient outcome > the right drug, right time
 - Patient well-being and experience
 - Antifungal stewardship
- Save costs